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Abstract - In this paper, an effective nonstationary boundary estimation scheme in EIT is presented
based on the interacting multiple model (IMM) algorithm. The inverse problem is treated as a stochastic
nonlinear state estimation problem with the time-varying boundary (state) being estimated on-line with
the aid of the IMM algorithm. In the design of the IMM algorithm multiple models with different
process noise covariances are incorporated to reduce the modeling uncertainty. Simulations are provided
to illustrate the proposed algorithm.

1. INTRODUCTION
Image reconstruction in electrical impedance tomography (EIT) is a kind of nonlinear optimization
problem in which the solution is obtained iteratively through the forward and inverse solvers. The physical
relationship between the internal resistivity and the surface voltage is governed by a partial differential
equation (Laplace equation) with appropriate boundary conditions. It is in most cases impossible to
obtain an analytical solution for the forward problem so that the numerical technique such as the finite
element method (FEM) is often employed. The inverse problem in EIT is a highly nonlinear and ill-posed
problem. Hence, various reconstruction algorithms (inverse solvers) with different regularization methods
have been developed in the literature [3, 6, 16] to estimate the internal resistivity distribution of the body.

Reconstruction algorithms presented so far have focused mainly on the case where the internal
resistivity of the body is time-invariant within the time taken to acquire a full set of measurement data
[19]. Therefore, these static imaging techniques often fail to obtain the satisfactory temporal resolution
for the reconstructed images when a rapid change in the resistivity happens within data acquisition time.

In order to enhance the temporal resolution, so called ‘dynamical imaging techniques’ have been
introduced for situations where the resistivity distribution inside the body changes rapidly. In these
dynamical approaches, the temporal resolution can be improved by a factor of p times (p is the number
of current patterns in 1 classical frame) at the expense of the spatial resolution. This result is due
to the fact that the dynamical imaging technique provides an estimate for resistivity distribution after
each current pattern is applied to the body. In most of these techniques, the inverse problem is treated
as a nonlinear state estimation problem in which the time-varying state is estimated with the aid of a
linearized Kalman filter (LKF) [16, 17] or extended Kalman filter (EKF) [9]. The state evolution model
used in these dynamical approaches is the so-called random walk model in which the rate of evolution is
governed by the covariance of the process noise. However, the modeling uncertainty of the random walk
model may be large enough to cause significant negative effects on the quality of the reconstructed image.

To reduce the modeling uncertainty and improve the spatial resolution, dynamical imaging techniques
in which a fluid dynamical evolution model was formulated, have been applied successfully to process
tomography [14]. In these approaches, the state transition matrix is obtained from the known dynamics
of fluids. In addition, multiple kinematic models have been incorporated into the interacting multiple
model (IMM) algorithm [1, 13] to estimate the nonstationary resistivity distribution [7, 8].

In the present study we address a special class of the EIT inverse problem, in which position and
shape of the objects in the domain are the unknowns to be identified [5, 10, 11]. In particular, it is assumed
that these unknowns are nonstationary within the time taken to acquire a full set of measurement data.
Considered situations of the type may arise for example in two-phase flow, in which the air bubbles can
appear and disappear abruptly. In the medical applications, the boundaries of lungs and heart in the chest
may vary with time according to the respirational and cardiac cycle, respectively. The state estimation
approach to identify nonstationary position and shape of the objects has been introduced by Vauhkonen
et al. [17], in which phase boundary is expressed as truncated Fourier series and the Fourier coefficients
are estimated dynamically with the aid of the both LKF and Kalman smoother. Recently, the EKF has
been applied to the estimation of nonstationary region boundary [12].
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In this paper, an effective nonstationary boundary estimation scheme in EIT is presented based on
the interacting multiple model (IMM) algorithm. The EIT boundary estimation problem is treated as a
stochastic nonlinear state estimation problem. Multiple state evolution models with different process noise
covariances are incorporated into the IMM algorithm. The generalized Tikhonov regularization scheme is
incorporated into the cost functional to mitigate the ill-conditioned characteristics. The proposed IMM-
based boundary estimation scheme is a recursive estimator and consists of a bank of model-conditioned
extended Kalman filters connected in parallel, a model probability evaluator, an estimate mixer at the
input of each Kalman filter, and an estimate combiner at the output of the parallel filters.

Extensive computer simulations are provided to illustrate the enhanced estimation performance.

2. MATHEMATICAL MODELING AND FORWARD SOLVER
When electrical currents Il (l = 1, 2, . . . , L) are injected into a body Ω ∈ R2 through the electrodes el

(l = 1, 2, . . . , L) attached on the boundary ∂Ω, and the resistivity distribution ρ(x, y) is known for Ω,
the corresponding electrical potential u(x, y) on Ω can be determined uniquely from a partial differential
equation, which can be derived from the Maxwell equations:

∇ · (ρ−1∇u) = 0 in Ω (1)

with the following boundary conditions based on the complete electrode model:

u + zl ρ
−1 ∂u

∂n
= ūl on el, l = 1, 2, . . . , L (2a)

∫

el

ρ−1 ∂u

∂n
dS = Il, l = 1, 2, . . . , L (2b)

ρ−1 ∂u

∂n
= 0 on ∂Ω\

L⋃

l=1

el (2c)

where, zl is the effective contact impedance between the l-th electrode and electrolyte, ūl is the potential
on the l-th electrode, el is the l-th electrode, n is the outward unit normal, and L is the number of
the electrodes. Various forms of boundary conditions may be used in the forward model [18]. We have
chosen the complete electrode model (CEM) [15, 16], which takes into account the discrete electrodes,
effects of the contact impedance, and the shunting effect of the electrodes. In addition, the following two
constraints for the injected currents and measured voltages ensure the existence and uniqueness of the
solution:

L∑

l=1

Il = 0,

L∑

l=1

ūl = 0. (3)

The computation of the potential u(x, y) on Ω and the voltages ūl on the electrodes for the given
resistivity distribution ρ(x, y) and boundary conditions is called the forward problem. In general, the
forward problem can not be solved analytically, so we have to resort to a numerical method. There
are different numerical methods such as the finite difference method (FDM), boundary element method
(BEM), and finite element method (FEM). In this paper, we used the FEM to obtain a numerical solution.
In the FEM, the object area is discretized into sufficiently small elements having a node at each corner,
while it is assumed that the resistivity distribution is constant within each element. The potential at
each node, and the “referenced” electrode voltages, defined by the vector v ∈ RNn+L−1, are calculated
by discretizing (1) into Y v = c, where Y ∈ R(Nn+L−1)×(Nn+L−1) is the so-called stiffness matrix and Nn

is the number of FEM nodes. Y and c are functions of the resistivity distribution in the object and the
injected currents through the electrodes, respectively. For more details on the forward solution and the
FEM approach, see [16].

3. INVERSE SOLVER WITH IMM ALGORITHM
3.1. Expression of phase boundaries
We assume that the outer boundary of the body, that is, ∂Ω is known. If the boundaries of the objects
are sufficiently smooth, they can be approximated in the form [11, 12]

Cl(s) =
(

xl(s)
yl(s)

)
=

Nθ∑
n=1

(
γxl

n θx
n(s)

γyl
n θy

n(s)

)
(4)
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where Cl(s), (l = 1, 2, . . . , S) is the boundary of the l-th object, S is the number of the objects in the
body, θn(s) are periodic and differentiable basis functions, and Nθ is the number of basis functions. In
this paper we express both coordinates of the curve as Fourier series with respect to the parameter s,
that is, we use basis functions of the form

θα
1 (s) = 1

θx
n(s) = sin(2nπs), n = 2, 3, . . .

θy
n(s) = cos(2nπs), n = 2, 3, . . .

(5)

where s ∈ [0, 1] and α denotes either x or y. Furthermore, using the expansion (4), the boundaries are
identified with the vector γ of the shape coefficients, that is,

γ =
(
γx1
1 , . . . , γx1

Nθ
, γy1

1 , . . . , γy1
Nθ

, . . . , . . . , γxS
1 , . . . , γxS

Nθ
, γyS

1 , . . . , γyS

Nθ

)tr (6)

where γ ∈ R2SNθ .

3.2. Dynamic model and inverse solver
3.2.1. Formulation of dynamic model. We consider the underlying inverse problem as a state estimation
problem to estimate the time-varying boundaries in the domain. We assume that the resistivity values of
the objects are known constants. We also assume that the problem has been discretized with respect to
the time variable. In the state estimation problem, we need the so-called dynamic model which consists
of the state equation, that is, the evolution of the boundaries, and the observation equation, that is, the
relationship between the boundary vector and measured voltages.

First, consider the state evolution model. In general, the evolution of the boundary vector γ is related
by the following nonlinear mapping;

γk+1 = gk(γk) + wk (7)

where γk is the state vector (the boundary representation) at time kT , gk is a function (gk : R2SNθ 7−→
R2SNθ ) defineing the state transition from time kT to (k + 1)T , where T is the sampling period
(measurement interval between successive patterns), and wk is assumed to be white Gaussian noise
to compensate for modeling uncertainty. Here, the state equation is assumed to be of linear form with
different process noise:

γi
k+1 = Fk γi

k + wi
k (8)

where Fk ∈ R2SNθ×2SNθ is the state transition matrix at time kT , and i = 1, 2, . . . ,M , where M is
the number of different models. Usually in EIT there is no a priori information on the time evolution
of the boundary vector so that we take Fk ≡ I (the identity matrix). Then (8) becomes the so-called
random-walk model in which the rate of time evolution is governed by the different covariance matrices,
defined by

Qi
k = E[wi

k (wi
k)T ]. (9)

Next, consider the observation model. Let ūk ∈ RL, be defined as

ūk ≡ [ū1
k, ū2

k, . . . , ūL
k ]tr (10)

be the actual surface measurement voltages induced by the k-th current pattern. Then the relationship
between the boundary vector and measured voltages can be described by the following nonlinear mapping
with a measurement error

ūk = hk(γk) + νk (11)

where hk is a function (hk;R2SNθ 7−→ RL) defining the relationship between the boundary vector and
measured voltages for the k-th current pattern. The measurement error νk ∈ RL is assumed to be white
Gaussian noise with covariance

Rk = E[νk νT
k ]. (12)

Linearizing (11) about the predicted (time-updated) states of i-th model γi
k|k−1, which will be

described later in Subsection 3.2.2, we obtain

ūk = hk(γi
k|k−1) + J i

k(γi
k|k−1) · (γi

k − γi
k|k−1) + H.O.Ts + νk (13)

K06
3



where H.O.Ts represents the higher-order terms which are assumed to be additional white Gaussian
noise, and J i

k(γi
k|k−1) ∈ RL×2SNθ is the Jacobian matrix defined by

J i
k(γi

k|k−1) ≡
∂hk

∂γ

∣∣∣∣
γ=γi

k|k−1

. (14)

Let’s define a pseudo-measurement as

yi
k ≡ ūk − hk(γi

k|k−1) + J i
k(γi

k|k−1) · γi
k|k−1. (15)

Then we can obtain the following linearized measurement equation:

yi
k = J i

k(γi
k|k−1) · γi

k + ν̄k (16)

where ν̄k ∈ RL is composed of the measurement error and linearization error with known covariance as

R̄k = E[ν̄k ν̄tr
k ]. (17)

3.2.2. Extended Kalman filter. In Kalman filtering we estimate the state vector γi
k for each model

based on all the measurements taken up to the time kT . With the Gaussian assumptions the required
estimate is obtained by minimizing the cost functional which is formulated based on the above state and
measurement equations (8) and (16), respectively. The cost functional for the extended Kalman filter
(EKF) is of the form

Ξi(γi
k) =

1
2

[
‖γi

k − γi
k|k−1‖(Ci

k|k−1)
−1 + ‖yi

k − J i
k(γi

k|k−1) · γi
k‖R̄−1

k
+ α‖R(γi

k − γ∗)‖
]

(18)

where ‖x‖A denotes xtrAx, α and R ∈ R2SNθ×2SNθ are the regularization parameter and matrix,
respectively, γ∗ is an a priori guess for the boundary representation, and Ci

k|k−1 ∈ R2SNθ×2SNθ is the
time-updated error covariance matrix, which is defined by

Ci
k|k−1 ≡ E[(γi

k − γi
k|k−1)(γ

i
k − γi

k|k−1)
T ]. (19)

The first two norms in (18) refer to the weighted norms, having as weighting matrices the inverse of the
covariances. The third term on the right-hand side of (18) is the regularization term which is included to
mitigate the ill-posedness of the given inverse problem. We used the generalized Tikhonov regularization
under a smoothness assumption in constructing the regularization matrix (R), with the regularization
parameter α chosen empirically.

If we define the augmented pseudo-measurement ȳi
k ∈ R(L+2SNθ) and measurement matrix Hi

k ∈
R(L+2SNθ)×2SNθ

ȳi
k ≡

(
yi

k√
αRγ∗

)
(20)

Hi
k ≡

(
J i

k(γi
k|k−1)√
αR

)
(21)

then the cost functional (18) can be rearranged as

Ξi(γi
k) =

1
2

[
‖γi

k − γi
k|k−1‖(Ci

k|k−1)
−1 + ‖ȳi

k −Hi
k · γi

k‖Γ−1
k

]
(22)

where Γk ∈ R(L+2SNθ)×(L+2SNθ) is a block diagonal matrix defined by

Γk ≡ Blockdiag[R̄k, I2SNθ
]. (23)

Minimizing the cost functional (22) and solving for the updates of the associated covariance matrices,
we obtain the recursive extended Kalman filter algorithm for each model, which consists of the following
two steps [4]:

• time update (prediction)

γi
k+1|k = Fk γi

k|k (24)

Ci
k+1|k = Fk Ci

k|k (Fk)T + Qi
k (25)

• measurement update (filtering)
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Figure 1. One-cycle flow diagram of the inverse solver with the IMM algorithm.

Gi
k+1 = Ci

k+1|k (Hi
k+1)

T [Hi
k+1 Ci

k+1|k (Hi
k+1)

T + Γk+1]−1 (26)

γi
k+1|k+1 = γi

k+1|k + Gi
k+1 (ȳi

k+1 −Hi
k+1 γi

k+1|k) (27)

Ci
k+1|k+1 = (I2SNθ

−Gi
k+1 Hi

k+1) Ci
k+1|k. (28)

Hence, we can find the estimated state γi
k|k for model i for k = 0, 1, 2, . . . , K, (K = rp), where K

is final step for the iteration, p is the number of the independent current patterns, and r is the number
of the classical frames. The most striking feature is that the Kalman filtering technique is an on-line
recursive form in place of the off-line batch form of the back projection or modified Newton-Raphson
algorithm. Therefore, there is no need to store the past measurements in order to estimate the present
state.

3.2.3. Inverse solver with IMM algorithm. The IMM algorithm originally proposed by Blom et al. [2],
has been known as the most cost effective algorithm (performance versus complexity) among the multiple
model (MM) algorithms. One of the first applications of the IMM is the work of [2] for air traffic control
(ATC). The IMM estimation algorithm has triggered a large variety of related approaches to target
tracking [13] and fault detection and diagnosis [20], to name just a few.

The particular behaviour of the IMM algorithm demonstrated in this application also sets it apart
from other applications. Whereas the general idea underlying the IMM algorithm is to combine multiple
models in order to decide which model gives the best fit with the measurements, what is specific to this
application is that these models only differ in their rate of evolution (here, different process covariance
matrices).

The IMM algorithm is composed of an estimate mixer at the input of each model-conditioned filter,
a bank of the EKFs running simultaneously, a model probability evaluator, and an estimate combiner at
the output of the filters. The flow diagram of the IMM algorithm for 1 cycle is depicted in Figure 1. The
multiple models interact through the mixing to estimate the time-varying boundary representation. With
the assumption that the model transition is governed by an underlying Markov chain, the mixed estimate
to each filter is obtained based on the model probabilities and the model transition probabilities. In the
filtering stage, each EKF uses a mixed estimate and a voltage measurement to compute a new estimate.
The model probabilities are evaluated based on the model transition probabilities, the model likelihoods
obtained from the filter residuals and corresponding covariances, and the prior model probabilities. Finally
the overall state estimate is computed in the form of the weighted sum of the new estimates and their
model probabilities.
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The IMM algorithm for M models to estimate the time-varying boundary representation is
summarized in the following 4 steps. More detailed derivation and explanation of the IMM are given
in [1, 13].

(i) Step 1: Mixing (interaction) of the estimates

Starting with measurement-updated states and covariances from the previous cycle, the mixed initial
condition for the j -th filter can be computed as:

• mixing estimate

γ0j
k|k =

M∑

i=1

γi
k|k µ

i|j
k (29)

• mixing covariance

C0j
k|k =

M∑

i=1

[Ci
k|k + (γ0j

k|k − γi
k|k)(γ0j

k|k − γi
k|k)T ] µi|j

k (30)

where γ0j
k|k and C0j

k|k represent mixed state and error covariance, respectively, for the input of the j -

th model-conditioned EKF. µ
i|j
k in (29) and (30) is the mixing probability (the weight with which the

estimates from the previous cycle are given to each filter at the beginning of the current cycle), defined
by

µ
i|j
k ≡ 1

c̄j
πij µi

k (31)

where the normalizing constant c̄j is calculated by

c̄j =
M∑

i=1

πij µi
k (32)

where πij is the assumed Markovian transition probability from model i to model j, which is defined by

πij ≡ Pr{M j
k+1|M i

k}, ∀M i, M j ∈ Ms (33)

where Pr{·} is probability and M i
k is the event that i -th mode is in effect at sampling time k, and Ms

is the set of all possible modal states at all times.

(ii) Step 2: Model-conditioned filtering

Based on Subsection 3.2.2 two stages of the model-conditioned EKF can be summarized as

• time update (prediction)

γj
k+1|k = Fk γ0j

k|k (34)

Cj
k+1|k = Fk C0j

k|k (Fk)T + Qj
k (35)

• measurement update (filtering)

Gj
k+1 = Cj

k+1|k(Hj
k+1)

T (Sj
k+1)

−1 (36)

γj
k+1|k+1 = γj

k+1|k + Gj
k+1 ej

k+1 (37)

Cj
k+1|k+1 = (Ij

2SNθ
−Gj

k+1 Hj
k+1) Cj

k+1|k (38)

where Gj
k+1 ∈ R2SNθ×(L+2SNθ) is the Kalman gain at time (k + 1)T . The residuals and their covariances

are defined as:

ej
k+1 ≡ ȳj

k+1 −Hj
k+1 ρj

k+1|k (39)

Sj
k+1 ≡ Hj

k+1 Cj
k+1|k (Hj

k+1)
T + Γk+1 (40)

where pseudo-measurement ȳj
k+1 and covariance matrix Γk+1 are given by (20) and (23) in Subsection

3.2.2, respectively.

(iii) Step 3: Model probability evaluation
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• likelihood function

Lj
k+1 =

1√
2π|Sj

k+1|
exp[− 1

2 (ej
k+1)

T (Sj
k+1)

−1ej
k+1] (41)

• model probability update

µj
k+1 =

1
c
Lj

k+1 c̄j (42)

where

c =
M∑

i=1

Li
k+1 c̄i. (43)

The model probability (42) is updated according to the probability measure (likelihood function (41)),
which is calculated based on the residual (39) and its covariance (40) of the corresponding EKF. Note
that the residual error defined in (39) is calculated as the difference between measured and calculated
voltage. It should be pointed out that the model probability is increased in cases where the residual is
decreased.

(iv) Step 4: Combination of estimates

• overall state estimates

γk+1|k+1 =
M∑

j=1

γj
k+1|k+1 µj

k+1 (44)

• overall error covariance estimates

Ck+1|k+1 =
M∑

j=1

[Cj
k+1|k+1 + (γk+1|k+1 − γj

k+1|k+1)(γk+1|k+1 − γj
k+1|k+1)

T ]µj
k+1. (45)

Therefore the overall state estimates are computed in the form of the weighted sum of each state estimate.
It should be noted that this combination step is only for output purposes and it is not part of the recursive
algorithm. In the computational procedure of the IMM algorithm depicted in Figure 1 and summarized
in (29)-(45), the following initial guesses need to be chosen before the computations: γi

0|0, Ci
0|0, µi

0, πij ,
Qi (i, j = 1, 2, . . . , M), and R̄.

4. NUMERICAL RESULTS
In order to illustrate the estimation performance of the proposed algorithm we carried out the computer
simulations using synthetic data by the FEM. We have considered changing boundary scenarios in the
body and trigonometric currents, injected into the circular domain with 15 cm in diameter through 32
electrodes. For the current injection we used the trigonometric current patterns which can be defined as

I l
k =

{
cos(kθl), l = 1, . . . , L, k = 1, . . . , L/2
sin((k − L/2)θl), l = 1, . . . , L, k = L/2 + 1, . . . , L− 1 (46)

where θl = 2πl/L. In the forward computations we used the FEM with a mesh of 2736 triangular elements
(Ne) and 1497 nodes (Nn). For the simulated boundary and, for the simplicity of the analysis, we set
the number of the objects S to be one and the number of basis functions Nθ to be 3 in (4). In the
inverse computations we used the FEM with a mesh of 684 triangular elements (Ne) and 407 nodes (Nn)
to reduce the computational burden. The electrode contact impedances (z) were assumed to be known
constants.

We assume that the object and background resistivities are known and the values are 250× 106 and
250, respectively. The parameters used for the simulations were as follows: The regularization parameter
α was set to 0.01. In the design of the three EKFs, the covariance matrices were assumed to be time
invariant and diagonal; the covariance matrices for the measurement noise R̄k was set to 3× 102IL, and
covariance matrices for the process noise were Q1

k = 0.1× I2SNθ
, Q2

k = 0.5× I2SNθ
, and Q3

k = 1× I2SNθ
.

For the initial state vector (γi
0|0, i = 1, 2, 3) of the EKFs we used the circle boundary which has the center

(5, 0) and diameter 5 cm, while the initial values of the error covariance matrices (Ci
0|0, i = 1, 2, 3) were

set to be the identity matrices. In the design of the IMM, the Markov chain transition probabilities πij

are assumed to be 0.8 for i = j and 0.1 for i 6= j. In general, the final results were not very sensitive to
these parameters (e.g., πii can be between 0.8 and 0.99). As can be expected, the lower (higher) value
will yield less (more) error during transient intervals but more (less) error during quiescent periods. The
initial model probabilies (µi

0, i = 1, 2, 3) are set to 1
3 .
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4.1. The first simulation
For the generation of the changing boundaries, it is assumed that a elliptic target was moved abruptly in
a counter clockwise direction after every eight current patterns. The boundaries of the true targets for 1
classical frame are shown with bold line in Figure 2. The first, second, and third columns of Figure 2 are
reconstructed boundaries from each EKF with different process covariances and shown with thin line. It
should be pointed out that estimation performance of the single EKF heavily depends on the magnitude
of the process noise covariance in the random walk model due to its modeling uncertainty. The fourth
column shows the reconstructed boundaries obtained by the IMM approach. As it can be seen, the IMM
yields better estimates than the EKFs.

The model probability (µi
k, i = 1, 2, 3) of each single EKF employed in the IMM is depicted in Figure

3. As it can be seen from Figure 3, the model probabilities of the IMM scheme switch rapidly since
each EKF has its own dominant intervals and the IMM decides which model gives the best fit with the
measurements. In this case the EKF1 and EKF2 is dominant alternately, while the EKF3 is insignificant

(a) (b) (c) (d)

Figure 2. The reconstructed boundaries in the first simulation. The true boundaries are bold lines and
the reconstructed boundaries are thin lines: (a) boundaries reconstructed by the EKF1, (b) boundaries
reconstructed by the EKF2, (c) boundaries reconstructed by the EKF3, and (d) boundaries reconstructed
by the IMM.

5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time step

model probability

Figure 3. Model probabilities for each model (EKF1: –X–, EKF2: –O–, EKF3: –♦–).
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for almost all intervals.

(a) (b) (c) (d)

Figure 4. The reconstructed boundaries in the second simulation. The true boundaries are bold
lines and the reconstructed boundaries are thin lines: (a) boundaries reconstructed by the EKF1, (b)
boundaries reconstructed by the EKF2, (c) boundaries reconstructed by the EKF3, and (d) boundaries
reconstructed by the IMM.

4.2. The second simulation
In the second simulation, we added zero-mean Gaussian noise to the calculated voltages to generate
noisy measurements; the noise level was set to be 1% of the corresponding calculated voltages. The other
parameters used in the reconstruction were the same as in the first simulation. The boundaries of the true
targets for 1 classical frame are shown with bold line in Figure 4. The first, second, and third columns
of Figure 4 are reconstructed boundaries from each EKF with different process covariances and shown
with thin line. The visual quality of the reconstructed boundaries from the IMM approach is enhanced
compared to that of the boundaries from each of the EKFs.

5. CONCLUSIONS
We addressed a special class of the EIT inverse problem, in which position and shape of the objects
were the unknowns to be identified in stead of resistivity itself. In particular, it was assumed that
these unknowns are nonstationary within the time taken to acquire a full set of measurement data. The
boundary of the object was formulated as truncated Fourier series and time-varying Fourier coefficients
were estimated with the aid of the IMM algorithm, following the voltage measurements corresponding to
each current pattern. In doing so, multiple models with different process noise covariances are employed
to alleviate the modeling uncertainty of the random walk model. A spatial regularization scheme was
employed to mitigate the ill-posedness of the problem.

The proposed boundary estimation scheme based on the IMM is a on-line recursive estimator, in
which there is no need to store the past measurements in order to estimate the present state. The
IMM approach employed in this paper consists of a bank of model-conditioned extended Kalman filters
connected in parallel, a model probability evaluator, an estimate mixer at the input of each Kalman filter,
and an estimate combiner at the output of the parallel filters.
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